Deep Learning Empowered Semi-Blind Joint Detection in Cooperative NOMA
نویسندگان
چکیده
منابع مشابه
Joint Deep Learning for Car Detection
Traditional object recognition approaches apply feature extraction, part deformation handling, occlusion handling and classification sequentially while they are independent from each other. Ouyang and Wang proposed a model for jointly learning of all of the mentioned processes using one deep neural network. We utilized, and manipulated their toolbox in order to apply it in car detection scenari...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملJoint blind and semi-blind detection and channel estimation for space-time trellis coded systems
This paper considers a Multiple-Input Multiple-Output (MIMO) communication system, which uses Space-Time Trellis Coding (STTC). A novel method of decoding STTC without a need to transmit training sequences is developed. The technique uses only a single channel estimate to acquire a complete set of the channels’ estimates while performing STTC detection. The method is akin to blind trellis searc...
متن کاملSemi-Cooperative Learning in Smart Grid Agents
Striving to reduce the environmental impact of our growing energy demand creates tough new challenges in how we generate and use electricity. We need to develop Smart Grid systems in which distributed sustainable energy resources are fully integrated and energy consumption is efficient. Customers, i.e., consumers and distributed producers, require agent technology that automates much of their d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3074350